Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Laurence Halpern; Jeffrey Rauch
Strictly dissipative boundary value problems at trihedral corners
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exp. No. 11, 10 p., doi: 10.5802/slsedp.101
Article PDF

Résumé - Abstract

For time independent symmetric hyperbolic systems with elliptic generators, gluing strictly dissipative boundary conditions at a multihedral corner yields a well posed boundary value problem. Uniqueness of solutions with square integrable boundary traces is proved using the Laplace transform and an $H^{1/2}$ regularity theorem.

Bibliography

[1] K.O. Friedrichs, Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7 (1954) 345-392.  MR 62932
[2] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333-418.
[3] P. Grisvard, Singularités des problèmes aux limites dans des polyèdres. (French) [Singularities of boundary value problems in polyhedra], Séminaire Goulaouic-Meyer-Schwartz, 1981/1982, exposé no. VIII, École Polytechnique, Palaiseau, 1982.
[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, Boston, MA, 1985
[5] L. Halpern and J.R. Rauch, Bérenger/Maxwell with discontinous absorptions: existence, perfection, and no loss, Séminaire Laurent Schwartz Année 2012-2013, exposé no. X, École Polytechnique, Palaiseau, 2014.
[6] L. Halpern and J.R. Rauch, Hyperbolic boundary value problems with trihedral corners, Discrete Contin. Dyn. Syst. 36, no. 8, 4403-4450, 2016.
[7] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 427-455, 1960.
[8] G. Métivier and J. Rauch, Strictly dissipative nonuniqueness with corners in Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics, Springer-Verlag, 2017, to appear.
Copyright Cellule MathDoc 2019 | Credit | Site Map