Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Philippe Gravejat; Christian Hainzl; Mathieu Lewin; Éric Séré
Deux modèles effectifs pour les champs électromagnétiques dans le vide de Dirac
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exp. No. 14, 20 p., doi: 10.5802/slsedp.89
Article PDF

Résumé - Abstract

Cet exposé présente des résultats récents [17, 18] quant à deux modèles effectifs pour les effets de la polarisation du vide quantique sur les champs électromagnétiques. Le modèle de Pauli-Villars les décrit de manière rigoureuse lorsque les champs électromagnétiques sont supposés classiques. À partir de ce premier modèle est ensuite proposée une dérivation du modèle classique d’Euler-Heisenberg [22] dans un régime de champs purement magnétiques et faiblement variables.

Bibliography

[1] V. Bach, E.-H. Lieb, and J.-P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, J. Stat. Phys. 76 (1994), no. 1-2, 3–89.  MR 1297873 |  Zbl 0839.60095
[2] M.G. Baring and A.K. Harding, Photon splitting and pair creation in highly magnetized pulsars, Astrophys. J. 547 (2001), no. 2, 929–948.
[3] D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79 (1997), no. 9, 1626–1629.
[4] H.B.G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51 (1948), no. 7, 793–795.  Zbl 0031.19005
[5] H.B.G. Casimir and D. Polder, The influence of retardation on the London-van der Waals forces, Phys. Rev. 73 (1948), no. 4, 360–372.  Zbl 0037.28103
[6] S. Chadha and P. Olesen, On Borel singularities in quantum field theory, Phys. Lett. B 72 (1977), no. 1, 87–90.  MR 479103
[7] V.I. Denisov and S.I. Svertilov, Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars, A&A 399 (2003), no. 3, L39–L42.
[8] P.A.M. Dirac, Theory of electrons and positrons, Nobel lecture delivered at Stockholm (1933).
[9] P.A.M. Dirac, Discussion of the infinite distribution of electrons in the theory of the positron, Proc. Camb. Philos. Soc. 30 (1934), 150–163.  Zbl 0009.13704
[10] P.A.M. Dirac, Théorie du positron, Structure et propriétés des noyaux atomiques, 7th Solvay Report, no. XXV, Gauthier-Villars, Paris, 1934, pp. 203–212.
[11] L. Erdös and J.-P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys. 188 (1997), no. 3, 599–656.  MR 1473314 |  Zbl 0909.47052
[12] L. Erdös and J.-P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate, Duke Math. J. 96 (1999), no. 1, 127–173.  MR 1663923 |  Zbl 1047.81022
[13] L. Erdös and J.-P. Solovej, Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field, Ann. Henri Poincaré 5 (2004), no. 4, 671–741.  MR 2090449 |  Zbl 1054.81016
[14] H. Euler, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Ann. d. Phys. 418 (1936), no. 5, 398–448.  Zbl 0014.23706 |  JFM 62.1634.03
[15] H. Euler and B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Naturwissenschaften 23 (1935), no. 15, 246–247.  JFM 61.1563.05
[16] P. Gravejat, C. Hainzl, M. Lewin, and É. Séré, Two Hartree-Fock models for the vacuum polarization, Journées Équations aux Dérivées Partielles, 2012, Exp. No. IV, 31 p.
[17] P. Gravejat, C. Hainzl, M. Lewin, and É. Séré, Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 603–665.  MR 3035987 |  Zbl 1269.81202
[18] P. Gravejat, M. Lewin, and É. Séré, Derivation of the magnetic Euler-Heisenberg energy, Preprint (2016), hal-01270637v2.
[19] W. Greiner and J. Reinhardt, Quantum electrodynamics, Fourth ed., Springer-Verlag, Berlin, 2009, Translated from the German.  MR 1321143 |  Zbl 0803.00010
[20] G.’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nuclear Physics B 44 (1972), no. 1, 189–213.  MR 391798
[21] C. Hainzl, M. Lewin, and J.-P. Solovej, The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math. 60 (2007), no. 4, 546–596.  MR 2290710 |  Zbl 1113.81126
[22] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Zts. f. Phys. 98 (1936), no. 11-12, 714–732.  Zbl 0013.18503
[23] W.E. Lamb and R.C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72 (1947), no. 3, 241–243.
[24] L.D. Landau and E.M. Lifshitz, Quantum mechanics. Non-relativistic theory, Third ed., Course of Theoretical Physics, vol. 3, Pergamon Press, Oxford, 1977, Translated from the Russian by J.B. Sykes and J.S. Bell.  Zbl 0081.22207
[25] M. Lewin, A nonlinear variational problem in relativistic quantum mechanics, Proceedings of the sixth European congress of mathematics, Krakow (Poland), July 2012 (R. Latala, A. Rucinski, P. Strzelecki, J. Swiatkowski, D. Wrzosek, and P. Zakrzewski, eds.), European Mathematical Society, 2014, pp. 45–59.  MR 3469149
[26] E.H. Lieb, J.-P. Solovej, and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Commun. Math. Phys. 161 (1994), no. 1, 77–124.  MR 1266071 |  Zbl 0807.47058
[27] M. Marklund, G. Brodin, and L. Stenflo, Electromagnetic wave collapse in a radiation background, Phys. Rev. Let. 91 (2003), no. 16, 163601.
[28] G.A. Mourou, T. Tajima, and S.V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78 (2006), no. 2, 309–371.
[29] W. Pauli and F. Villars, On the invariant regularization in relativistic quantum theory, Rev. Modern Phys. 21 (1949), 434–444.  MR 32504 |  Zbl 0037.12503
[30] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Frontiers in Physics, vol. 94, Westview Press, New-York, 1995.  MR 1402248
[31] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951), no. 5, 664–679.  MR 41727 |  Zbl 0043.42201
[32] E.A. Uehling, Polarization effects in the positron theory, Phys. Rev. 48 (1935), no. 1, 55–63.  Zbl 0012.13605
[33] V.F. Weisskopf, Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons, Dan. Mat. Fys. Medd. 16 (1936), no. 6, 1–39.  Zbl 0016.23806
[34] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974), no. 8, 2445–2459.
[35] J. Yngvason, Thomas-Fermi theory for matter in a magnetic field as a limit of quantum mechanics, Lett. Math. Phys. 22 (1991), no. 2, 107–117.  MR 1122047 |  Zbl 0729.60114
Copyright Cellule MathDoc 2017 | Credit | Site Map