Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Adrien Blanchet
On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 8, 26 p., doi: 10.5802/slsedp.6
Article PDF

Résumé - Abstract

This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass $M_c$ such that the solutions exist globally in time if the mass is less than $M_c$ and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.

Bibliography

[1] L. A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2005.  MR 2129498 |  Zbl 1145.35001
[2] J. Bedrossian and Inwon Kim, Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous, preprint, 2011.
[3] J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), pp. 1683–1715.  MR 2793895 |  Zbl 1222.49038
[4] A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), pp. 625–661.  MR 1611136 |  Zbl 0916.35008
[5] Idem, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), pp. 1323–1366.  MR 1836532
[6] P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. of Math. Biol., 63 (2011), pp. 1–32.  MR 2806487 |  Zbl 1230.92011
[7] P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The $8\pi $-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), pp. 1563–1583.  MR 2249579 |  Zbl 1105.35131
[8] A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), pp. 691–721.  MR 2383208 |  Zbl 1205.65332
[9] A. Blanchet, E. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, preprint, arXiv:1009.0134.  MR 2876403 |  Zbl 1237.35155
[10] A. Blanchet, J.A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), pp. 133–168.  MR 2481820 |  Zbl 1172.35035
[11] A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in $\mathbb{R}^2$, Comm. Pure Appl. Math., 61 (2008), pp. 1449–1481.  MR 2436186 |  Zbl 1155.35100
[12] A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, Journal of Mathematical Analysis and Applications, 361 (2010), pp. 533–542..  MR 2568716 |  Zbl 1176.35029
[13] A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. (electronic).  MR 2226917 |  Zbl 1112.35023
[14] A. Blanchet and Ph. Laurençot, Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, To appear in Communications on Pure and Applied Analysis (2010).  MR 2833337
[15] M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical Mechanisms for Chemotactic Pattern Formation by Bacteria, Biophysical Journal 74 (1998), pp. 1677–1693.
[16] M. Burger, Y. Dolak-Struss, and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), pp. 1–28.  MR 2397995 |  Zbl 1165.35471
[17] V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pure et Appl., 86 (2006), pp. 155–175.  MR 2247456 |  Zbl 1116.35057
[18] V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\mathbb{R}^2$, Commun. Math. Sci. 6 (2008), pp. 417–447.  MR 2433703 |  Zbl 1149.35360
[19] V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a non local model for spontaneous cell polarisation, arXiv:1105.4429.
[20] E. Carlen and A. Figalli, Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation, preprint, arXiv:1107.5976.
[21] J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19 (2003), pp. 1–48.  MR 2053570 |  Zbl 1073.35127
[22] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.  MR 2002047 |  Zbl 1055.35003
[23] P.H. Chavanis, Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter’s great red spot, Phys. Rev. E, 68 (2003), pp. 036108.
[24] P.H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, Eur. Phys. J. B, 62 (2008), pp. 179–208 .  Zbl 1189.35335
[25] P.-H. Chavanis and R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of $N = 2$ particles, The Eur. Phys. J. B, 78 (2010), pp. 139–165.  MR 2747637
[26] P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in $D$ dimensions, Phys. Rev. E, 69 (2004), 016116.
[27] S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath, 55 (1984), pp. 217–237.  MR 813704
[28] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), pp. 217–237.  MR 632161 |  Zbl 0481.92010
[29] L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), pp. 1–29.  MR 2099126 |  Zbl 1115.35136
[30] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81 (2002), pp. 847–875.  MR 1940370 |  Zbl 1112.35310
[31] J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\mathbb{R}^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611–616.  MR 2103197 |  Zbl 1056.35076
[32] J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Disc. Cont. Dynam. Systems B, 25 (2009), pp. 109–121.  MR 2525170 |  Zbl 1180.35131
[33] M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. of Math. Biol., 35 (1996), pp. 177–194.  MR 1478048 |  Zbl 0866.92009
[34] M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), pp. 583–623.  MR 1415081 |  Zbl 0864.35008
[35] T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), pp. 280–301.  MR 1826309 |  Zbl 0998.92006
[36] T. Hillen and K. Painter, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), pp. 183–217.  MR 2448428 |  Zbl 1161.92003
[37] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103–165.  MR 2013508 |  Zbl 1071.35001
[38] Idem, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), pp. 51–69.  MR 2073515 |  Zbl 1072.35007
[39] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824.  MR 1046835 |  Zbl 0746.35002
[40] N. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk, SIAM J. Math. Anal., 40 (2008/09), pp. 1852–1881.  MR 2471903 |  Zbl pre05607991
[41] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), pp. 399–415.  Zbl 1170.92306
[42] R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), pp. 566–588.  MR 2130723 |  Zbl 1065.35063
[43] C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), pp. 301–332.  MR 1974458 |  Zbl 1024.35040
[44] S. Luckhaus, Y. Sugiyama, J. J. L. Velázquez, Measure valued solutions of the 2D Keller-Segel system, arXiv:1011.0282.  MR 2968590 |  Zbl pre06102060
[45] P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010), pp. 1678–1685.  Zbl 1236.92014
[46] M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. of Comp. and Appl. Math., 97 (1998), pp. 99–119.  MR 1651769 |  Zbl 0934.35066
[47] F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), pp. 565–672.  MR 2061329 |  Zbl 1067.35110
[48] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), pp. 581–601.  MR 1361006 |  Zbl 0843.92007
[49] T. Nagai, T. Senba, T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J, 30 (2000), pp. 463–497.  MR 1799300 |  Zbl 0984.35079
[50] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal of Theoretical Biology, 42 (1973), pp. 63–105.
[51] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), pp. 311–338.  MR 81586 |  Zbl pre06086964
[52] B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007.  MR 2270822 |  Zbl 1185.92006
[53] D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), pp. 1697–1738.  MR 2189683 |  Zbl 1091.35071
[54] C. Sire and P.-H. Chavanis, Gravitational collapse of a Brownian gas, Banach Center Publ. 66, 287, 2004.  MR 2143351 |  Zbl 1056.92008
[55] C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E, 78 (2008), 061111.  MR 2546057
[56] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Eq., 19 (2006), pp. 841–876.  MR 2263432 |  Zbl 1212.35240
[57] Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Diff. Eq., 12 (2007), pp. 121–144.  MR 2294500 |  Zbl 1171.35068
[58] Y. Sugiyama and J. J. L. Velázquez, Self-similar blow-up with a continuous range of values of the aggregated mass for a degenerate Keller-Segel system, Adv. Diff. Eq., 16 (2011), pp. 85–112.  MR 2766895 |  Zbl 1221.35087
[59] C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences 139, Springer-Verlag, New York, 1999.  MR 1696311 |  Zbl 0928.35157
[60] T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution, Adv. Diff. Eq., 14 (2009), pp. 433–476.  MR 2502701 |  Zbl 1213.35077
[61] J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., 62 (2002), pp. 1581–1633 (electronic).  MR 1918569 |  Zbl 1013.35004
[62] Idem, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223 (electronic).  MR 2068667 |  Zbl 1058.35021
[63] Idem, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1224–1248 (electronic).  MR 2068668 |  Zbl 1058.35022
[64] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics Vol. 58, Amer. Math. Soc, Providence, 2003.  MR 1964483 |  Zbl 1106.90001
[65] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), pp. 567–576.  MR 691044 |  Zbl 0527.35023
Copyright Cellule MathDoc 2019 | Credit | Site Map