Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Roger Lewandowski
On Bardina and Approximate Deconvolution Models
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 36, 12 p., doi: 10.5802/slsedp.27
Article PDF

Résumé - Abstract

We first outline the procedure of averaging the incompressible Navier-Stokes equations when the flow is turbulent for various type of filters. We introduce the turbulence model called Bardina’s model, for which we are able to prove existence and uniqueness of a distributional solution. In order to reconstruct some of the flow frequencies that are underestimated by Bardina’s model, we next introduce the approximate deconvolution model (ADM). We prove existence and uniqueness of a “regular weak solution” to the ADM for each deconvolution order $N$, and then that the corresponding sequence of solutions converges to the mean Navier-Stokes Equations when $N$ goes to infinity.

Bibliography

[1] H. Ali, Mathematical study of some turbulence models. PhD Thesis of the University of Rennes 1, 2011.
[2] J. Bardina, J.H. Ferziger and W.C. Reynold. Improved turbulence models based on large eddy simulation of homogeneous, invompressible, turbulent ows. Technical Report No.TF-19, Department of mechanical Engineering, Stanford University, Stanford, 1983.
[3] F.K. Chow, R.L. Street, M. Xue and J.H. Ferziger. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer ow, Journal of the Atmospheric Sciences, 62(7): 2058-2077, 2005.
[4] L. Berselli and R. Lewandowski. Convergence of Approximate Deconvolution Models to the mean Navier-Stokes equations Annales de l’Institut Henri Poincare (C), Non Linear Analysis, 29:171-198, 2012.  MR 2901193 |  Zbl pre06031286
[5] A. Dunca and Y. Epshteyn. On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J. Math. Anal., 37(6):1890–1902 (electronic), 2006.  MR 2213398 |  Zbl 1128.76029
[6] W. Layton and R. Lewandowski. A simple, accurate and stable scale similarity model for LES: Energy balance and existence of weak solutions. Appl. Math. Lett., 4:1205–1209, 2003.  MR 2015713 |  Zbl 1039.76027
[7] W. Layton and R. Lewandowski. On a well posed turbulence model. Discrete and Continuous Dynamical Systems series B, 6(1):111-128, 2006.  MR 2172198 |  Zbl 1089.76028
[8] W. J. Layton and R. Lewandowski. Residual stress of approximate deconvolution models of turbulence. J. Turbul., 7:Paper 46, 21 pp. (electronic), 2006.  MR 2254595
[9] W. Layton and R. Lewandowski, A high accuracy Leray-deconvolution model of turbulence and its limiting behavior Analysis and Applications 6(1):23-49, 2008.  MR 2380885 |  Zbl 1210.76084
[10] S. Stoltz and N. A. Adams. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids, 11:1699–1701, 1999.  Zbl 1147.76506
[11] S. Stolz, N. A. Adams, and L. Kleiser. An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids, 13(4):997–1015, 2001.  Zbl 1184.76530
Copyright Cellule MathDoc 2019 | Credit | Site Map