Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Karine Beauchard
Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 34, 24 p., doi: 10.5802/slsedp.26
Article PDF

Résumé - Abstract

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator $\partial _x^2+|x|^{2\gamma }\partial _y^2$ ($\gamma >0$) in the rectangle $(x,y) \in (-1,1)\times (0,1)$ or with the Kolmogorov-type operator $ v^\gamma \partial _x f + \partial _v^2 f$ ($\gamma \in \lbrace 1,2\rbrace $) in the rectangle $(x,v) \in \mathbb{T} \times (-1,1)$, under an additive control supported in an open subset $\omega $ of the space domain.

We prove that the Grushin-type equation is null controllable in any positive time for $\gamma <1$ and that there is no time for which it is null controllable for $\gamma >1$. In the transition regime $\gamma =1$ and when $\omega $ is a strip $\omega =(a,b)\times (0,1)\,, (0<a,b\le 1)$, a positive minimal time is required for null controllability.

For the Kolmogorov-type equation with $\gamma =1$ and periodic-type boundary conditions (in $v$), we prove that null controllability holds in any positive time, with any control support $\omega $. This improves the previous result [6], in which the control support was a strip $\omega =\mathbb{T}\times (a,b)$.

For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip $\omega =\mathbb{T}\times (a,b)$ ($0<a<b<1$) as control support, we prove that null controllability holds in any positive time if $\gamma =1$, and only in large time if $\gamma =2$.

Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.

Bibliography

[1] F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli. Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ., 6(2):161–204, 2006.  MR 2227693 |  Zbl 1103.35052
[2] S. Alinhac and C. Zuily. Uniqueness and nonuniqueness of the Cauchy problem for hyperbolic operators with double characteristics. Comm. Partial Differential Equations, 6(7):799–828, 1981.  MR 623646 |  Zbl 0482.35052
[3] Y. Almog. The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal., 40(2):824–850, 2008.  MR 2438788 |  Zbl 1165.82029
[4] K. Beauchard. Null controllability of Kolmogorov-type equations. (preprint), 2012.
[5] K. Beauchard, P. Cannarsa, and R. Guglielmi. Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc (to appear), 2011.
[6] K. Beauchard and E. Zuazua. Some controllability results for the 2D Kolmogorov equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:1793–1815, 2009. Numdam |  MR 2566710 |  Zbl 1172.93005
[7] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl., 336(2):865–887, 2007.  MR 2352986 |  Zbl 1189.35349
[8] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Math. Acad. Sci. Paris, 344(6):357–362, 2007.  MR 2310670 |  Zbl 1115.35055
[9] P. Cannarsa and L. de Teresa. Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ., Paper No. 73:21 p., 2009.  MR 2519898 |  Zbl 1178.35216
[10] P. Cannarsa, G. Fragnelli, and D. Rocchetti. Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media, 2(4):695–715 (electronic), 2007.  MR 2357764 |  Zbl 1140.93011
[11] P. Cannarsa, G. Fragnelli, and D. Rocchetti. Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ., 8:583–616, 2008.  MR 2460930 |  Zbl 1176.35108
[12] P. Cannarsa, P. Martinez, and J. Vancostenoble. Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal., 3(4):607–635, 2004.  MR 2106292 |  Zbl 1063.35092
[13] P. Cannarsa, P. Martinez, and J. Vancostenoble. Null controllability of degenerate heat equations. Adv. Differential Equations, 10(2):153–190, 2005.  MR 2106129 |  Zbl 1145.35408
[14] P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim., 47(1):1–19, 2008.  MR 2373460 |  Zbl 1168.35025
[15] P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates and null controllability for boundary-degenerate parabolic operators. C. R. Math. Acad. Sci. Paris, 347(3-4):147–152, 2009.  MR 2538102 |  Zbl 1162.35330
[16] A. Doubova, E. Fernández-Cara, and E. Zuazua. On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim., 42 (3):798–819, 2002.  MR 1939871 |  Zbl 1038.93041
[17] A. Doubova, A. Osses, and J.-P. Puel. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM Control Optim. Calc. Var., 8:621–661, 2002. Numdam |  MR 1932966 |  Zbl 1092.93006
[18] T. Duyckaerts, X. Zhang, and E. Zuazua. On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré : Analyse Nonlinéaire, 25:1–41, 2008.  MR 2383077 |  Zbl 1248.93031
[19] Sylvain Ervedoza. Control and stabilization properties for a singular heat equation with an inverse-square potential. Comm. Partial Differential Equations, 33(10-12):1996–2019, 2008.  MR 2475327 |  Zbl 1170.35331
[20] C. Fabre, J.P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh, 125A:31–61, 1995.  MR 1318622 |  Zbl 0818.93032
[21] H.O. Fattorini and D. Russel. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal., 43:272–292, 1971.  MR 335014 |  Zbl 0231.93003
[22] E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17:583–616, 2000. Numdam |  MR 1791879 |  Zbl 0970.93023
[23] E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: The linear case. Advances in Differential Equations, 5(4-6):465–514, 2000.  MR 1750109 |  Zbl 1007.93034
[24] E. Fernández-Cara and E. Zuazua. On the null controllability of the one-dimensional heat equation with BV coefficients. Computational and Applied Mathematics, 12:167–190, 2002.  MR 2009951 |  Zbl 1119.93311
[25] C. Flores and L. de Teresa. Carleman estimates for degenerate parabolic equations with first order terms and applications. C. R. Math. Acad. Sci. Paris, 348(7-8):391–396, 2010.  MR 2607025 |  Zbl 1188.35032
[26] A.V. Fursikov and O.Y. Imanuvilov. Controllability of evolution equations. Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 34, 1996.  MR 1406566 |  Zbl 0862.49004
[27] N. Garofalo. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J. Differential Equations, 104(1):117–146, 1993.  MR 1224123 |  Zbl 0788.35051
[28] M. González-Burgos and L. de Teresa. Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv. Differential Equations, 12 (11):1201–1240, 2007.  MR 2372238 |  Zbl 1170.93007
[29] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.  MR 222474 |  Zbl 0156.10701
[30] O.Y. Imanuvilov. Boundary controllability of parabolic equations. Uspekhi. Mat. Nauk, 48(3(291)):211–212, 1993.  MR 1243631
[31] O.Y. Imanuvilov. Controllability of parabolic equations. Mat. Sb., 186(6):109–132, 1995.  MR 1349016 |  Zbl 0845.35040
[32] O.Y. Imanuvilov and M. Yamamoto. Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications. Control of Nonlinear Distributed Parameter Systems, G. Chen et al. eds., Marcel-Dekker, pages 113–137, 2000.  MR 1817179 |  Zbl 0977.93041
[33] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. P.D.E., 20:335–356, 1995.  MR 1312710 |  Zbl 0819.35071
[34] G. Lebeau and J. Le Rousseau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM:COCV (DOI:10.1051/cocv/2011168), 2011.  Zbl pre06111871
[35] J.-L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, Paris, 1968.  MR 244606 |  Zbl 0179.41801
[36] A. Lopez and E. Zuazua. Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Annales IHP. Analyse non linéaire, 19 (5):543–580, 2002. Numdam |  MR 1922469 |  Zbl 1009.35009
[37] P. Martinez and J. Vancostenoble. Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ., 6(2):325–362, 2006.  MR 2227700 |  Zbl 1179.93043
[38] P. Martinez, J. Vancostonoble, and J.-P. Raymond. Regional null controllability of a linearized Crocco type equation. SIAM J. Control Optim., 42, no. 2:709–728, 2003.  MR 1982289 |  Zbl 1037.93013
[39] L. Miller. On the null-controllability of the heat equation in unbounded domains. Bulletin des Sciences Mathématiques, 129, 2:175–185, 2005.  MR 2123266 |  Zbl 1079.35018
[40] L. Miller. On exponential observability estimates for the heat semigroup with explicit rates. Rendiconti Lincei: Matematica e Applicazioni, 17, 4:351–366, 2006.  MR 2287707 |  Zbl 1150.93006
[41] J. Le Rousseau. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differential Equations, 233(2):417–447, 2007.  MR 2292514 |  Zbl 1128.35020
[42] J. Vancostenoble and E. Zuazua. Null controllability for the heat equation with singular inverse-square potentials. J. Funct. Anal., 254(7):1864–1902, 2008.  MR 2397877 |  Zbl 1145.93009
[43] C. Villani. Hypocoercivity, volume 202. Mem. Amer. Math. Soc., 2009.  MR 2562709 |  Zbl 1197.35004
[44] Zabczyk. Mathematical control theory: an introduction. Birkhäuser, 2000.  MR 2348543
[45] E. Zuazua. Approximate controllability of the semilinear heat equation: boundary control. International Conference in honour of Prof. R. Glowinski, Computational Sciences for the 21st Century, M.O. Bristeau et al. eds., John Wiley and Sons, pages 738–747, 1997.  Zbl 0916.93016
[46] E. Zuazua. Finite dimensional null-controllability of the semilinear heat equation. J.Math. Pures et Appl., 76:237–264, 1997.  MR 1441986 |  Zbl 0872.93014
[47] C. Zuily. Uniqueness and non-uniqueness in the Cauchy problem. Boston Basel Stuttgart Birkhäuser, 1983.  Zbl 0521.35003
Copyright Cellule MathDoc 2019 | Credit | Site Map