Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Maria J. Esteban
Une revue sur quelques inégalités fonctionnelles et les propriétés de symétrie pour leurs fonctions extrémales
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 29, 13 p., doi: 10.5802/slsedp.23
Article PDF

Résumé - Abstract

Cette revue est la version écrite d’un exposé sur quelques résultats (d’après des travaux en collaboration avec J. Dolbeault, M. Loss, G. Tarantello and A. Tertikas) concernant les propriétés de symétrie des fonctions extrémales pour les inégalités de Caffarelli-Kohn-Nirenberg

Bibliography

[1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), pp. 573–598.  MR 448404 |  Zbl 0371.46011
[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2), 138 (1993), pp. 213–242.  MR 1230930 |  Zbl 0826.58042
[3] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), pp. 489–539.  MR 1134481 |  Zbl 0755.35036
[4] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), pp. 259–275. Numdam |  MR 768824 |  Zbl 0563.46024
[5] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities : sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), pp. 229–258.  MR 1794994 |  Zbl 1072.35506
[6] K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2), 48 (1993), pp. 137–151.  MR 1223899 |  Zbl 0739.26013
[7] M. Del Pino, J. Dolbeault, S. Filippas, and A. Tertikas, A logarithmic Hardy inequality, Journal of Functional Analysis, 259 (2010), pp. 2045 – 2072.  MR 2671121 |  Zbl 1209.26020
[8] J. Dolbeault, M. J. Esteban, and M. Loss, Symmetry of extremals of functional inequalities via spectral estimates for linear operators, To appear in J. Math. Physics, (2012).  MR 2333781
[9] J. Dolbeault, M. J. Esteban, M. Loss, and G. Tarantello, On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities, Adv. Nonlinear Stud., 9 (2009), pp. 713–726.  MR 2560127 |  Zbl 1182.26031
[10] J. Dolbeault, M. J. Esteban, and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), pp. 313–341.  MR 2437030 |  Zbl 1179.26055
[11] J. Dolbeault, M. J. Esteban, G. Tarantello, and A. Tertikas, Radial symmetry and symmetry breaking for some interpolation inequalities, To appear in Calculus of Variations and PDE, (2011).  MR 2846263 |  Zbl 1246.26014
[12] V. Felli and M. Schneider, Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, J. Differential Equations, 191 (2003), pp. 121–142.  MR 1973285 |  Zbl 1088.35023
[13] V. Glaser, A. Martin, H. Grosse, and W. Thirring, A family of optimal conditions for the absence of bound states in a potential, Essays in Honor of Valentine Bargmann, E. Lieb, B. Simon, A. Wightman Eds. Princeton University Press, 1976, pp. 169–194.  Zbl 0332.31004
[14] T. Horiuchi, Best constant in weighted Sobolev inequality with weights being powers of distance from the origin, J. Inequal. Appl., 1 (1997), pp. 275–292.  MR 1731336 |  Zbl 0899.35034
[15] J. B. Keller, Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation, J. Mathematical Phys., 2 (1961), pp. 262–266.  MR 121101 |  Zbl 0099.06901
[16] E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, Essays in Honor of Valentine Bargmann, E. Lieb, B. Simon, A. Wightman Eds. Princeton University Press, 1976, pp. 269–303.  Zbl 0342.35044
[17] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), pp. 349–374.  MR 717827 |  Zbl 0527.42011
[18] C.-S. Lin and Z.-Q. Wang, Erratum to : “Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities” [Proc. Amer. Math. Soc. 132 (2004), no. 6, 1685–1691], Proc. Amer. Math. Soc., 132 (2004), p. 2183.  MR 2051129 |  Zbl 1036.35028
[19] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–145. Numdam |  MR 778970 |  Zbl 0541.49009
[20] Idem, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283. Numdam |  MR 778974 |  Zbl 0704.49004
[21] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 353–372.  MR 463908 |  Zbl 0353.46018
Copyright Cellule MathDoc 2019 | Credit | Site Map