Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Ludovic Rifford
Regularity of weak KAM solutions and Mañé’s Conjecture
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 27, 22 p., doi: 10.5802/slsedp.22
Article PDF

Résumé - Abstract

We provide a crash course in weak KAM theory and review recent results concerning the existence and uniqueness of weak KAM solutions and their link with the so-called Mañé conjecture.

Bibliography

[1] P. Bernard. Smooth critical sub-solutions of the Hamilton-Jacobi equation. Math. Res. Lett., 14(3):503–511, 2007.  MR 2318653 |  Zbl 1125.37044
[2] P. Bernard. Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup., 40(3):445–452, 2007. Numdam |  MR 2493387 |  Zbl 1133.35027
[3] J.-B. Bost. Tores invariants des systèmes dynamiques hamiltoniens. In Séminaire Bourbaki, Vol. 1984/85 Astérisque, 133-134:113–157, 1986. Numdam |  MR 837218 |  Zbl 0602.58021
[4] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004.  MR 2041617 |  Zbl 1095.49003
[5] M. Castelpietra and L. Rifford. Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry. ESAIM Control Optim. Calc. Var., 16 (3):695–718, 2010. Numdam |  MR 2674633 |  Zbl 1201.35087
[6] F. Clarke. A Lipschitz regularity theorem. Ergodic Theory Dynam. Systems, 27(6):1713–1718, 2007.  MR 2371592 |  Zbl 1138.49032
[7] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. To appear.
[8] G. Contreras and R. Iturriaga. Convex Hamiltonians without conjugate points. Ergodic Theory Dynam. Systems, 19(4):901–952, 1999.  MR 1709426 |  Zbl 1044.37046
[9] A. Fathi. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 324(9):1043–1046, 1997.  MR 1451248 |  Zbl 0885.58022
[10] A. Fathi. Solutions KAM faible conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 325(6):649–652, 1997.  MR 1473840 |  Zbl 0943.37031
[11] A. Fathi. Orbites hétéroclones et ensemble de Peierl. C. R. Acad. Sci. Paris Sér. I Math., 326(10):1213–1216, 1998.  MR 1650195 |  Zbl 0915.58033
[12] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math., 327(3):267–270, 1998.  MR 1650261 |  Zbl 1052.37514
[13] A. Fathi. Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press, to appear.
[14] A. Fathi, A. Figalli and L. Rifford. On the Hausdorff dimension of the Mather quotient. Comm. Pure Appl. Math., 62(4):445–500, 2009.  MR 2492705 |  Zbl 1172.37018
[15] A. Fathi and A. Siconolfi. Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation. Invent. math., 1155:363–388, 2004.  MR 2031431 |  Zbl 1061.58008
[16] A. Figalli and L. Rifford. Closing Aubry sets I. Preprint, 2010.
[17] A. Figalli and L. Rifford. Closing Aubry sets II. Preprint, 2010.
[18] Y. Li and L. Nirenberg. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math., 58(1):85–146, 2005.  MR 2094267 |  Zbl 1062.49021
[19] R. Mañé. Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9(2):273–310, 1996.  MR 1384478 |  Zbl 0886.58037
[20] J. N. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207:169–207, 1991.  MR 1109661 |  Zbl 0696.58027
[21] J. N. Mather. Variational construction of connecting orbits. Ann. Inst. Fourier, 43:1349–1386, 1993. Cedram |  MR 1275203 |  Zbl 0803.58019
[22] J. N. Mather. Examples of Aubry sets. Ergod. Th. Dynam. Sys., 24:1667–1723, 2004.  MR 2104599 |  Zbl 1090.37047
[23] L. Rifford. On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard’s Theorems. Comm. Partial Differential Equations, 33(3):517–559, 2008.  MR 2398240 |  Zbl 1134.70007
[24] J.-M. Roquejoffre. Propriétés qualitatives des solutions des équations de Hamilton-Jacobi (d’après A. Fathi, A. Siconolfi, P. Bernard). In Séminaire Bourbaki, Vol. 2006/2007 Astérisque, 317:269–293, 2008.  MR 2487737 |  Zbl 1162.35003
Copyright Cellule MathDoc 2019 | Credit | Site Map