Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Daniel Han-Kwan
Anisotropie dans un plasma fortement magnétisé
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 25, 14 p., doi: 10.5802/slsedp.20
Article PDF

Résumé - Abstract

Nous présentons les résultats prouvés dans [20, 22], qui concernent l’étude asymptotique de l’équation de Vlasov-Poisson dans un régime quasineutre et de champ magnétique intense. Nous insisterons en particulier sur les conséquences de l’anisotropie du problème physique sur l’analyse mathématique.

Bibliography

[1] G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6) :1482–1518, 1992.  MR 1185639 |  Zbl 0770.35005
[2] M. Bostan. The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime. Asymptot. Anal., 61(2) :91–123, 2009.  MR 2499194 |  Zbl 1180.35501
[3] Y. Brenier. A homogenized model for vortex sheets. Arch. Rational Mech. Anal., 138(4) :319–353, 1997.  MR 1467558 |  Zbl 0962.35140
[4] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations, 25(3-4) :737–754, 2000.  MR 1748352 |  Zbl 0970.35110
[5] Y. Brenier and E. Grenier. Limite singulière du système de Vlasov-Poisson dans le régime de quasi neutralité : le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. I Math., 318(2) :121–124, 1994.  MR 1260322 |  Zbl 0803.35110
[6] S. Cordier, E. Grenier, and Y. Guo. Two-stream instabilities in plasmas. Methods Appl. Anal., 7(2) :391–405, 2000. Cathleen Morawetz : a great mathematician.  MR 1869291 |  Zbl 1002.82029
[7] R. J. DiPerna and P.-L. Lions. Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math., 42(6) :729–757, 1989.  MR 1003433 |  Zbl 0698.35128
[8] R. J. DiPerna, P.-L. Lions, and Y. Meyer. $L^p$ regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-4) :271–287, 1991. Numdam |  MR 1127927 |  Zbl 0763.35014
[9] E. Frénod and A. Mouton. Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates. J. Pure Appl. Math. Adv. Appl., 4(2) :135–169, 2010.  MR 2816864 |  Zbl 1225.35016
[10] E. Frénod and E. Sonnendrücker. The finite Larmor radius approximation. SIAM J. Math. Anal., 32(6) :1227–1247 (electronic), 2001.  MR 1856246 |  Zbl 0980.82030
[11] P. Ghendrih, M. Hauray, and A. Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. Kinet. and Relat. Models, 2(4) :707–725, 2009.  MR 2556718 |  Zbl 1195.82087
[12] F. Golse, P.L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76(1) :110–125, 1988.  MR 923047 |  Zbl 0652.47031
[13] F. Golse and L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. (9), 78(8) :791–817, 1999.  MR 1715342 |  Zbl 0977.35108
[14] F. Golse and L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field in quasineutral regime. Math. Models Methods Appl. Sci., 13(5) :661–714, 2003.  MR 1978931 |  Zbl 1053.82032
[15] V. Grandgirard et al. Global full-$f$ gyrokinetic simulations of plasma turbulence. Plasma Phys. Control. Fusion, 49 :173–182, 2007.
[16] E. Grenier. Defect measures of the Vlasov-Poisson system in the quasineutral regime. Comm. Partial Differential Equations, 20(7-8) :1189–1215, 1995.  MR 1335748 |  Zbl 0828.35106
[17] E. Grenier. Oscillations in quasineutral plasmas. Comm. Partial Differential Equations, 21(3-4) :363–394, 1996.  MR 1387452 |  Zbl 0849.35107
[18] E. Grenier. Limite quasineutre en dimension 1. In Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), pages Exp. No. II, 8. Univ. Nantes, Nantes, 1999.  MR 1718954 |  Zbl 1008.35054
[19] Y. Guo and W. A. Strauss. Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3) :339–352, 1995. Numdam |  MR 1340268 |  Zbl 0836.35130
[20] D. Han-Kwan. The three-dimensional finite Larmor radius approximation. Asymptot. Anal., 66(1) :9–33, 2010.  MR 2582446 |  Zbl 1191.35267
[21] D. Han-Kwan. Effect of the polarization drift in a strongly magnetized plasma. ESAIM Math. Mod. Num. Anal., 46(4) :929-947, 2012.  MR 2891475
[22] D. Han-Kwan. On the three-dimensional finite Larmor radius approximation : the case of electrons in a fixed background of ions. Soumis, 2011.  MR 2582446 |  Zbl 1191.35267
[23] D. Han-Kwan. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm. Partial Differential Equations, 36(8) :1385–1425, 2011.  MR 2825596 |  Zbl 1228.35251
[24] M. Hauray and A. Nouri. Well-posedness of a diffusive gyro-kinetic model. To appear in Ann. IHP (Analyse Non Linéaire), 2011.  MR 2823883 |  Zbl pre05956008
[25] P.-E. Jabin. Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma (8), 1 :71–138, 2009.  MR 2597793 |  Zbl 1190.35152
[26] G. Loeper. Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems. Comm. Partial Differential Equations, 30(7-9) :1141–1167, 2005.  MR 2180297 |  Zbl 1077.76072
[27] N. Masmoudi. From Vlasov-Poisson system to the incompressible Euler system. Comm. Partial Differential Equations, 26(9) :1913–1928, 2001.  MR 1865949 |  Zbl 1083.35116
[28] C. Mouhot and C. Villani. On Landau damping. To appear in Acta Mathematica, 2011.  MR 2863910 |  Zbl 1239.82017
[29] G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3) :608–623, 1989.  MR 990867 |  Zbl 0688.35007
[30] L. Nirenberg. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differential Geom., 6 :561–576, 1972.  MR 322321 |  Zbl 0257.35001
[31] T. Nishida. A note on a theorem of Nirenbeg. J. Differential Geom., 12 :629–633, 1977.  MR 512931 |  Zbl 0368.35007
[32] O. Penrose. Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids, 3 :258–265, 1960.  Zbl 0090.22801
Copyright Cellule MathDoc 2019 | Credit | Site Map