Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
N. Lerner; Y. Morimoto; K. Pravda-Starov; C.-J. Xu
Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 23, 10 p., doi: 10.5802/slsedp.18
Article PDF

Résumé - Abstract

We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [15].

Bibliography

[1] Alexandre, R.: Remarks on 3D Boltzmann linear operator without cutoff. Transport Theory Statist. Phys. 28-5, 433Ð473 (1999).  MR 1705619 |  Zbl 0939.35147
[2] R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal. 152 (2000) 327-355.  MR 1765272 |  Zbl 0968.76076
[3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T.Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255 (2008) 2013-2066.  MR 2462585 |  Zbl 1166.35038
[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys. 304 (2011), 513-581.  MR 2795331 |  Zbl 1230.35082
[5] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., Vol. 262 (2012), 915-1010.  MR 2863853 |  Zbl 1232.35110
[6] C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, vol. 67 (1988), Springer-Verlag, New York  MR 1313028 |  Zbl 0646.76001
[7] L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys. 168 (1995) 417-440.  MR 1324404 |  Zbl 0827.76081
[8] L. Desvillettes, G. Furioli, E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc. 361 (2009) 1731–1747.  MR 2465814 |  Zbl 1159.76044
[9] P.-T. Gressman, R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc. 24 (2011), 771-847.  MR 2784329 |  Zbl 1248.35140
[10] L. Hörmander, The analysis of linear partial differential operators, vol. I–IV, (1985) Springer Verlag.  Zbl 0601.35001
[11] L. Hörmander, Symplectic classification of quadratic forms and general Mehler formulas, Math. Z. 219, 3 (1995) 413–449.  MR 1339714 |  Zbl 0829.35150
[12] N. Lekrine, C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac’s equation, Kinetic and Related Models, 2 (2009), 647-666.  MR 2556716 |  Zbl 1194.35089
[13] N. Lerner, Metrics on the phase space and non-selfadjoint pseudodifferential operators, (2010) Pseudo-Differential Operators. Theory and Applications, Birkhäuser Verlag, Basel.  MR 2599384 |  Zbl 1186.47001
[14] N. Lerner, Y. Morimoto, K. Pravda-Starov, Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff, (2011) to appear in Comm. Partial Differential Equations, arXiv:1012.4915.  MR 2876831 |  Zbl 1251.35064
[15] N. Lerner, Y. Morimoto, K. Pravda-Starov, C.-J. Xu, Diagonalization of the Linearized Non-Cutoff Radially Symmetric Boltzmann Operator, preprint, arXiv:1111.0423v1.
[16] Y. Morimoto, C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1 (2007), 129-152.  MR 2359105 |  Zbl 1146.35027
[17] Y. Morimoto, C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009) 596-617.  MR 2523694 |  Zbl 1175.35024
[18] C. Mouhot, Explicit coercivity estimates for the Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006) 1321-1348.  MR 2254617 |  Zbl 1101.76053
[19] C. Mouhot, R.M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515-535.  MR 2322149 |  Zbl pre05163855
[20] Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math. 27 (1974) 407-428.  MR 636407 |  Zbl 0304.45010
[21] Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math. 27 (1974) 559-581.  MR 636407 |  Zbl 0304.45010
[22] A. Unterberger, Oscillateur harmonique et opérateurs pseudodifférentiels, Ann. Institut Fourier, 29 (3) (1979), 201-221. Cedram |  MR 552965 |  Zbl 0396.47027
[23] C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam (2002) 71-305.  MR 1942465 |  Zbl 1170.82369
[24] B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Partial Differential Equations, 19 (1994) 2057-2074.  MR 1301182 |  Zbl 0818.35128
Copyright Cellule MathDoc 2019 | Credit | Site Map