Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Gilles A. Francfort
Un résumé de la théorie variationnelle de la rupture
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 22, 11 p., doi: 10.5802/slsedp.17
Article PDF

Bibliography

[1] L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford (2000).  MR 1857292 |  Zbl 0957.49001
[2] L. Ambrosio & V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma $-convergence, Comm. Pure Appl. Math. 43 (1990), 999-1036.  MR 1075076 |  Zbl 0722.49020
[3] M. Amestoy & J.-B. Leblond, Crack paths in plane situation – II, Detailed form of the expansion of the stress intensity factors, Int. J. Solids Stuct. 29 (1989), 465–501.  MR 1138337 |  Zbl 0755.73072
[4] H.-A. Bahr, H.-J. Weiss, H.G. Maschke & F. Meissner, Multiple crack propagation in a strip caused by thermal shock, Theoretical and Applied Fracture Mechanics 10 (1988), 219–226.
[5] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, dans : Adv. Appl. Mech., Vol. 7, Academic Press, New York (1962), 55–129.  MR 149728
[6] B. Bourdin, G. A. Francfort & J.-J. Marigo, The Variational Approach to Fracture, Springer, New York (2008).  MR 2473620 |  Zbl 1176.74018
[7] D. Bucur & N. Varchon, Boundary variation for a Neumann problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 807–821. Numdam |  MR 1822408 |  Zbl 1072.35063
[8] A. Braides, G. Dal Maso & A. Garroni, Variational formulation of softening phenomena in fracture mechanics : the one dimensional case, Arch. Rat. Mech. Anal. 146 (1999), 23–58.  MR 1682660 |  Zbl 0945.74006
[9] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Rational Mech. Anal. 167 (2003), 211–233.  MR 1978582 |  Zbl 1030.74007
[10] A. Chambolle, An approximation result for special functions with bounded variations, J. Math Pures Appl. 83 (2004), 929–954.  MR 2074682 |  Zbl 1084.49038
[11] A. Chambolle & F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets, Comm. Partial Differential Equations 22 (1997), 811–840.  MR 1452169 |  Zbl 0901.35019
[12] A. Chambolle, G. A. Francfort & J.-J. Marigo, Revisiting Energy Release Rates in Brittle Fracture, J. Nonlinear Sci. 20 (2010), 395–424.  MR 2665275 |  Zbl 1211.74183
[13] G. Dal Maso, G. A. Francfort & R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal. 176 (2005), 165–225.  MR 2186036 |  Zbl 1064.74150
[14] G. Dal Maso & G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 257–290.  MR 2580510 |  Zbl 1188.35205
[15] G. Dal Maso & R. Toader, A Model for the Quasi-Static Growth of Brittle Fractures : Existence and Approximation Results, Arch. Rational Mech. Anal. 162 (2002), 101–135.  MR 1897378 |  Zbl 1042.74002
[16] G. A. Francfort & C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pur. Appl. Math. 56 (2003), 1465–1500.  MR 1988896 |  Zbl 1068.74056
[17] G. A. Francfort & J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998), 1319–1342.  MR 1633984 |  Zbl 0966.74060
[18] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London CCXXI-A (1921), 163–198.
[19] A. Mielke, Evolution of rate-independent systems, dans : Evolutionary equations. Vol. II, Dafermos, A. and Feireisl, E., eds., Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005), 41–559.  MR 2182832 |  Zbl 1120.47062
Copyright Cellule MathDoc 2019 | Credit | Site Map