Center for diffusion of mathematic journals


Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Next article
Josselin Garnier
Identification of Green’s Functions Singularities by Cross Correlation of Ambient Noise Signals
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 1, 18 p., doi: 10.5802/slsedp.1
Article PDF

Résumé - Abstract

In this paper we consider the problem of estimating the singular support of the Green’s function of the wave equation by using ambient noise signals recorded by passive sensors. We assume that noise sources emit stationary random signals into the medium which are recorded by sensors. We explain how the cross correlation of the signals recorded by two sensors is related to the Green’s function between the sensors. By looking at the singular support of the cross correlation we can obtain an estimate of the travel time between them. We consider different situations, such as when the support of the noise distribution extends over all space or is spatially limited, the medium is open or bounded, homogeneous or inhomogeneous, dissipative or not. We identify the configurations under which travel time estimation by cross correlation is possible. We show that iterated cross correlations using auxiliary sensors can be efficient for travel time estimation when the support of the noise sources is spatially limited.


[1] Abramowitz M and Stegun I 1965 Handbook of mathematical functions (New York: Dover Publications)
[2] Aki K and Chouet B 1975 Origin of coda waves: Source, attenuation and scattering effects J. Geophys. Res. 80 3322-3342
[3] Bardos C, Garnier J, and Papanicolaou G 2008 Identification of Green’s functions singularities by cross correlation of noisy signals Inverse Problems 24 015011  MR 2384770 |  Zbl 1145.35307
[4] Berryman J 1990 Stable iterative reconstruction algorithm for nonlinear travel time tomography Inverse Problems 6 21-42  MR 1036377 |  Zbl 0708.65065
[5] Blackstock D T 2000 Fundamentals of physical acoustics (New York: Wiley)
[6] Bleistein N, Cohen J K and Stockwell J W Jr 2001 Mathematics of multidimensional seismic imaging, migration, and inversion (New York: Springer Verlag)  MR 1799275 |  Zbl 0967.86001
[7] Born M and Wolf E 1999 Principles of optics (Cambridge: Cambridge University Press)
[8] Brenguier F, Shapiro N M, Campillo M, Ferrazzini V, Duputel Z, Coutant O, and Nercessian A 2008 Towards forecasting volcanic eruptions using seismic noise Nature Geoscience 1 126-130
[9] Claerbout J F 1985 Imaging the Earth’s interior (Palo Alto: Blackwell Scientific Publications)
[10] Colin de Verdière Y 2009 Semiclassical analysis and passive imaging, Nonlinearity 22 R45-R75.  MR 2507319 |  Zbl 1177.86011
[11] Curtis A, Gerstoft P, Sato H, Snieder R, and Wapenaar K 2006 Seismic interferometry - turning noise into signal The Leading Edge 25 1082-1092
[12] Duvall Jr T L, Jefferies S M, Harvey J W, and Pomerantz M A 1993 Time-distance helioseismology Nature 362 430-432
[13] Fouque J P, Garnier J, Papanicolaou G, and Sølna K 2007 Wave propagation and time reversal in randomly layered media (New York: Springer)  MR 2327824 |  Zbl pre05194319
[14] Garnier J 2005 Imaging in randomly layered media by cross-correlating noisy signals SIAM Multiscale Model. Simul. 4 610-640  MR 2162869 |  Zbl 1089.76054
[15] Garnier J and Papanicolaou G 2009 Passive sensor imaging using cross correlations of noisy signals in a scattering medium SIAM J. Imaging Sciences 2 396-437.  MR 2496063 |  Zbl 1179.35344
[16] Garnier J and Papanicolaou G 2011 Fluctuation theory of ambient noise imaging CRAS Geoscience 343 502-511
[17] Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux P, Sanchez-Sesma F J, Shapiro N M, and Weaver R L 2008 Cross-correlation of random fields: mathematical approach and applications Geophysical Prospecting 56 375-393
[18] Larose E, Margerin L, Derode A, Van Tiggelen B, Campillo M, Shapiro N, Paul A, Stehly L, and Tanter M 2006 Correlation of random wave fields: an interdisciplinary review Geophysics 71 SI11-SI21
[19] Lobkis O I and Weaver R L 2001 On the emergence of the Green’s function in the correlations of a diffuse field J. Acoustic. Soc. Am. 110 3011-3017
[20] Malcolm A E, Scales J, and Van Tiggelen B A 2004 Extracting the Green function from diffuse, equipartitioned waves Phys. Rev. E 70 015601
[21] Rickett J and Claerbout J 1999 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring The Leading Edge 18 957-960
[22] Roux P, Sabra K G, Kuperman W A, and Roux A 2005 Ambient noise cross correlation in free space: Theoretical approach J. Acoust. Soc. Am. 117 79-84
[23] Sabra K G, Gerstoft P, Roux P, and Kuperman W 2005 Surface wave tomography from microseisms in Southern California Geophys. Res. Lett. 32 L14311.
[24] Sato H and Fehler M 1998 Wave propagation and scattering in the heterogeneous Earth (New York: Springer-Verlag)  MR 1488700
[25] Shapiro N M, Campillo M, Stehly L, and Ritzwoller M H 2005 High-resolution surface wave tomography from ambient noise Science 307 1615-1618
[26] Snieder R 2004 Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase Phys. Rev. E 69 046610
[27] Stehly L, Campillo M, and Shapiro N M 2006 A study of the seismic noise from its long-range correlation properties Geophys. Res. Lett. 111 B10306
[28] Stehly L, Campillo M, Froment B, and Weaver R 2008 Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise, J. Geophys. Res. 113 B11306.
[29] Wapenaar K and Fokkema J 2006 Green’s function representations for seismic interferometry Geophysics 71 SI33-SI46.
[30] Yao H, van der Hilst R D, and de Hoop M V 2006 Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis Ð I. Phase velocity maps Geophysical Journal International 166 732-744
Copyright Cellule MathDoc 2019 | Credit | Site Map