Center for diffusion of mathematic journals


Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Eduard Feireisl
Domain sensitivity in singular limits of compressible viscous fluids
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 12, 16 p., doi: 10.5802/slsedp.9
Article PDF

Résumé - Abstract

In this note, we discuss several recently developed methods for studying stability of a singular limit process with respect to the shape of the underlying physical space. As a model example, we consider a compressible viscous barotropic fluid occupying a spatial domain $\Omega \subset R^3$. In what follows, we describe two rather different problems: (i) the choice of effective boundary conditions; (ii) the fluid flow in the low Mach number regime. In the remaining part of the paper, we analyze these two issues simultaneously comparing the impact of different scales on the form of the resulting effective equations as well as the boundary conditions. Such a “synthesis” of several mathematical techniques may be useful in analyzing much broader class of multiscale problems.


[1] A. A. Amirat, D. Bresch, J. Lemoine, and J. Simon. Effect of rugosity on a flow governed by stationary Navier-Stokes equations. Quart. Appl. Math., 59:768–785, 2001.  MR 1866556 |  Zbl 1019.76014
[2] J. M. Arrieta and D. Krejčiřík. Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbations of the domain. In Integral methods in science and engineering. Vol. 1, pages 9–19. Birkhäuser Boston Inc., Boston, MA, 2010.  MR 2663114 |  Zbl 1196.35148
[3] D. Bucur, E. Feireisl, and Nečasová. Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions. Arch. Rational Mech. Anal., 197:117–138, 2010.  MR 2646816 |  Zbl pre05782718
[4] D. Bucur, E. Feireisl, Š. Nečasová, and J. Wolf. On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differential Equations, 244:2890–2908, 2008.  MR 2418180 |  Zbl 1143.35080
[5] M. Bulíček, J. Málek, and K.R. Rajagopal. Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear- rate dependent viscosity. Indiana Univ. Math. J., 56:51–86, 2007.  MR 2305930 |  Zbl 1129.35055
[6] J. Casado-Díaz, E. Fernández-Cara, and J. Simon. Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differential Equations, 189:526–537, 2003.  MR 1964478 |  Zbl 1061.76014
[7] Luna-Laynez M. Suárez-Grau F.J. Casado-Díaz, J. Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall. Math. Models Meth. Appl. Sci., 20:121–156, 2010.  MR 2606246 |  Zbl 1194.35302
[8] F. Coron. Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation. J. Statistical Phys., 54:829–857, 1989.  MR 988561 |  Zbl 0666.76103
[9] H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon. Schrödinger operators: with applications to quantum mechanics and global geometry. Texts and monographs in physics, Springer-Verlag, Berlin,Heidelberg, 1987.  MR 883643 |  Zbl 0619.47005
[10] R. Danchin. Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math., 124:1153–1219, 2002.  MR 1939784 |  Zbl 1048.35075
[11] P. D’Ancona and R. Racke. Evolution equations in non-flat waveguides. 2010. arXiv:1010.0817.
[12] D. M. Eidus. Limiting amplitude principle (in Russian). Usp. Mat. Nauk, 24(3):91–156, 1969.  MR 601072
[13] R. Farwig, H. Kozono, and H. Sohr. An $L^q$-approach to Stokes and Navier-Stokes equations in general domains. Acta Math., 195:21–53, 2005.  MR 2233684 |  Zbl 1111.35033
[14] E. Feireisl. Local decay of acoustic waves in the low mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differential Equations, 2010. Submitted.  MR 2832163 |  Zbl 1229.35174
[15] E. Feireisl, T. Karper, O. Kreml, and J. Stebel. Stability with respect to domain of the low Mach number limit of compressible viscous fluids. 2011. Preprint.
[16] E. Feireisl, A. Novotný, and H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech., 3:358–392, 2001.  MR 1867887 |  Zbl 0997.35043
[17] I. Gallagher. Résultats récents sur la limite incompressible. Astérisque, (299):Exp. No. 926, vii, 29–57, 2005. Séminaire Bourbaki. Vol. 2003/2004. Numdam |  MR 2167201 |  Zbl pre02213913
[18] A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. Une analyse géométrique. [A geometric analysis].  MR 2512810 |  Zbl 1098.49001
[19] W. Jaeger and A. Mikelić. On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differential Equations, 170:96–122, 2001.  MR 1813101 |  Zbl 1009.76017
[20] T. Kato. Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary. In Seminar on PDE’s, S.S. Chern (ed.), Springer, New York, 1984.  MR 765230 |  Zbl 0559.35067
[21] Y. Last. Quantum dynamics and decomposition of singular continuous spectra. J. Funct. Anal., 142:406–445, 1996.  MR 1423040 |  Zbl 0905.47059
[22] R. Leis. Initial-boundary value problems in mathematical physics. B.G. Teubner, Stuttgart, 1986.  MR 841971 |  Zbl 0599.35001
[23] J. Lighthill. On sound generated aerodynamically I. General theory. Proc. of the Royal Society of London, A 211:564–587, 1952.  MR 47459 |  Zbl 0049.25905
[24] J. Lighthill. On sound generated aerodynamically II. General theory. Proc. of the Royal Society of London, A 222:1–32, 1954.  MR 61515 |  Zbl 0055.19109
[25] C.M. Linton, P.-L., and P. McIver. Embedded trapped modes in water waves and acoustics. Wave Motion, 45:16–29, 2007.  MR 2441664 |  Zbl 1231.76046
[26] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models. Oxford Science Publication, Oxford, 1998.  MR 1637634
[27] P.-L. Lions and N. Masmoudi. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl., 77:585–627, 1998.  MR 1628173 |  Zbl 0909.35101
[28] N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of Differential Equations, III, C. Dafermos, E. Feireisl Eds., Elsevier, Amsterdam, 2006.  MR 2549370 |  Zbl 1205.35230
[29] B. Mohammadi, O. Pironneau, and F. Valentin. Rough boundaries and wall laws. Int. J. Numer. Meth. Fluids, 27:169–177, 1998.  MR 1602088 |  Zbl 0904.76031
[30] J.-C. Nédélec. Acoustic and electromagnetic equations. Springer-Verlag, Heidelberg, 2001.  MR 1822275 |  Zbl 0981.35002
[31] N. V. Priezjev and S.M. Troian. Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech., 554:25–46, 2006.  Zbl 1091.76016
[32] S. Richardson. On the no-slip boundary condition. J. Fluid Mech., 59:707–719, 1973.  Zbl 0265.76037
[33] S. Schochet. The mathematical theory of low Mach number flows. M2ANMath. Model Numer. anal., 39:441–458, 2005. Numdam |  MR 2157144 |  Zbl 1094.35094
[34] B. R. Vaĭnberg. Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki. Moskov. Gos. Univ., Moscow, 1982.  MR 700559
Copyright Cellule MathDoc 2019 | Credit | Site Map