Centre de diffusion de revues académiques mathématiques

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table des matières de ce volume | Article précédent | Article suivant
Franck Sueur
Sur la dynamique de corps solides immergés dans un fluide incompressible
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exp. No. 11, 20 p., doi: 10.5802/slsedp.39
Article PDF

Résumé - Abstract

Cet exposé présente quelques résultats récents obtenus par l’auteur en collaboration avec Olivier Glass, Christophe Lacave, Ayman Moussa, Gabriela Planas et Takéo Takahashi, sur l’analyse théorique de la dynamique de corps solides immergśs dans un fluide incompressible.

Bibliographie

[1] L. Ambrosio, N. Gigli et G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2008.  MR 2401600 |  Zbl 1090.35002
[2] V. I. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(1), 319-361, 1966. Cedram |  MR 202082 |  Zbl 0148.45301
[3] W. Braun et K. Hepp. The Vlasov dynamics and its fluctuations in the $1/N$ limit of interacting classical particles. Comm. Math. Phys. 56(2), 101-113, 1977.  MR 475547 |  Zbl 1155.81383
[4] Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations 25(3-4), 737-754, 2000.  MR 1748352 |  Zbl 0970.35110
[5] J.-Y. Chemin. Sur le mouvement des particules d’un fluide parfait incompressible bidimensionnel. Invent. Math. 103(3), 599-629, 1991.  MR 1091620 |  Zbl 0739.76010
[6] J.-Y. Chemin. Régularité de la trajectoire des particules d’un fluide parfait incompressible remplissant l’espace. J. Math. Pures Appl. 71(5), 407-417, 1992.  MR 1191582 |  Zbl 0833.35112
[7] J.-Y. Chemin. Fluides parfaits incompressibles. Astérisque, 230, 1995.  MR 1340046 |  Zbl 0829.76003
[8] S. Childress. An introduction to theoretical fluid mechanics. Courant Lecture Notes in Mathematics, 19. Courant Institute of Mathematical Sciences, New York ; American Mathematical Society, Providence, RI, 2009.  MR 2546940 |  Zbl pre05625333
[9] C. Conca, J. A. San Martin et M. Tucsnak. Existence de solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25(5-6), 1019-1042, 2000.  MR 1759801 |  Zbl 0954.35135
[10] P. Degond. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions. Ann. Sci. École Norm. Sup. (4), 519-542, 1986. Numdam |  MR 875086 |  Zbl 0619.35087
[11] J.-M. Delort. Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4(3), 553-586, 1991.  MR 1102579 |  Zbl 0780.35073
[12] B. Desjardins et M. J. Esteban. On weak solutions for fluid-rigid structure interaction : compressible and incompressible models. Comm. Partial Differential Equations 25(7-8), 1399-1413, 2000.  MR 1765138 |  Zbl 0953.35118
[13] R. J. DiPerna et A. J. Majda. Concentrations in regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. 40(3), 301-345, 1987.  MR 882068 |  Zbl 0850.76730
[14] R. L. Dobrushin. Vlasov equations. Funct. Anal. Appl. 13, 115-123, 1979.  MR 541637 |  Zbl 0422.35068
[15] E. Feireisl. On the motion of rigid bodies in a viscous incompressible fluid. Dedicated to Philippe Bénilan. J. Evol. Equ. 3(3), 419-441, 2003.  MR 2019028 |  Zbl 1039.76071
[16] E. Feireisl. On the motion of rigid bodies in a viscous fluid. Mathematical theory in fluid mechanics (Paseky, 2001). Appl. Math. 47(6), 463-484, 2002.  MR 1948192 |  Zbl 1090.35137
[17] E. Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167(4), 281-308, 2003.  MR 1981859 |  Zbl 1090.76061
[18] U. Frisch et V. Zheligovsky. A very smooth ride in a rough sea. Preprint 2012, arXiv :1212.4333.
[19] G. P. Galdi. On the motion of a rigid body in a viscous liquid : a mathematical analysis with applications. Handbook of mathematical fluid dynamics, Vol. I, 653-791, North-Holland, Amsterdam, 2002.  MR 1942470 |  Zbl 1230.76016
[20] P. Gamblin. Système d’Euler incompressible et régularité microlocale analytique. Ann. Inst. Fourier (Grenoble) 44(5), 1449–1475, 1994. Cedram |  MR 1313791 |  Zbl 0820.35111
[21] M. Geissert, K. Götze et M. Hieber, Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. A paraître dans Trans. Amer. Math. Soc.  MR 3003269
[22] D. Gérard-Varet et M. Hillairet. Regularity issues in the problem of fluid structure interaction. Arch. Ration. Mech. Anal. 195(2), 375-407, 2010.  MR 2592281 |  Zbl 1192.35131
[23] D. Gérard-Varet et M. Hillairet. Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Preprint 2012, arXiv :1207.0469.  MR 2916378
[24] O. Glass. Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var. 5, 1-44, 2000. Numdam |  MR 1745685 |  Zbl 0940.93012
[25] O. Glass et T. Horsin. Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patch. J. Math. Pures Appl. 93(1), 61-90, 2010.  MR 2579376 |  Zbl 1180.35531
[26] O. Glass et T. Horsin. Prescribing the motion of a set of particles in a 3D perfect fluid. SIAM J. on Control and Optimization 50(5), 2726-2742, 2012.
[27] O. Glass, C. Lacave et F. Sueur. On the motion of a small body immersed in a two dimensional incompressible perfect fluid. Preprint 2011, arXiv :1104.5404. A paraître dans Bulletin de la SMF.
[28] O. Glass et F. Sueur. The movement of a solid in an incompressible perfect fluid as a geodesic flow. Proceedings of the AMS. 140(6), 2155-2168, 2012.  MR 2888201 |  Zbl pre06038846
[29] O. Glass et F. Sueur. On the motion of a rigid body in a two-dimensional irregular ideal flow. SIAM J. Math. Anal. 44(5), 3101-3126, 2012.  MR 3023405
[30] O. Glass et F. Sueur. Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Preprint 2012, arXiv :1203.2894.
[31] O. Glass et F. Sueur. Low regularity solutions for the two-dimensional “rigid body + incompressible Euler" system. Preprint 2012, hal-00682976.  MR 3023405
[32] O. Glass, F. Sueur et T. Takahashi. Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Ann. Sci. École Norm. Sup. Volume 45(1), 1-51, 2012.  MR 2961786 |  Zbl pre06037740
[33] F. Golse et L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. 78(8), 791-817, 1999.  MR 1715342 |  Zbl 0977.35108
[34] C. Grotta Ragazzo, J. Koiller et W. M. Oliva. On the motion of two-dimensional vortices with mass. Nonlinear Sci., 4(5), 375-418, 1994.  MR 1291115 |  Zbl 0808.76015
[35] N. M. Günther. Über ein Hauptproblem der Hydrodynamik. (German) Math. Z. 24(1), 448-499, 1926.  MR 1544775 |  JFM 51.0659.02
[36] M. Gunzburger, H.-C. Lee et G. A. Seregin. Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266, 2000.  MR 1781915 |  Zbl 0970.35096
[37] M. Hauray et P. E. Jabin. $N$-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489-524, 2007.  MR 2278413 |  Zbl 1107.76066
[38] T. I. Hesla, Collisions of Smooth Bodies in Viscous Fluids : A Mathematical Investigation. PhD thesis, University of Minnesota, revised version. 2005.
[39] M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differential Equations 32(7-9), 1345-1371, 2007.  MR 2354496 |  Zbl 1221.35279
[40] K.-H. Hoffmann et V. N. Starovoitov. On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9(2), 633-648, 1999  MR 1725677 |  Zbl 0966.76016
[41] J.-G. Houot, J. San Martin et M. Tucsnak. Existence and uniqueness of solutions for the equations modelling the motion of rigid bodies in a perfect fluid. J. Funct. Anal. 259(11), 2856-2885, 2010.  MR 2719277 |  Zbl 1200.35222
[42] A. Inoue et M. Wakimoto. On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(2), 303–319, 1977.  MR 481649 |  Zbl 0381.35066
[43] N. V. Judakov. The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid (in Russian). Dinamika Splošn. Sredy 18, 249-253, 1974.  MR 464811
[44] T. Kato. On the smoothness of trajectories in incompressible perfect fluids. In Nonlinear wave equations (Providence, RI, 1998), volume 263 of Contemp. Math., 109–130. Amer. Math. Soc., Providence, RI, 2000.  MR 1777638 |  Zbl 0972.35102
[45] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193-248, 1933.  MR 1555394 |  JFM 60.0726.05
[46] J. Leray. Étude de diverses équations intégrales non linéaires et de quelques problèmes de l’hydrodynamique. J. Maths Pures Appl. 12, 1-82, 1933.  Zbl 0006.16702
[47] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze. (German) Math. Z. 23(1), 89-154, 1925.  MR 1544733 |  JFM 51.0658.01
[48] L. Lichtenstein. Über einige Existenzprobleme der Hydrodynamik. (German) Math. Z. 32(1), 608-640, 1930.  MR 1545189 |  JFM 56.1249.01
[49] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications 3, 1996.  MR 1422251 |  Zbl 0908.76004
[50] G. Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86(1), 68-79, 2006.  MR 2246357 |  Zbl 1111.35045
[51] C. Marchioro et M. Pulvirenti. Mathematical theory of incompressible nonviscous fluids. Applied Mathematical Sciences 96, Springer-Verlag, 1994.  MR 1245492 |  Zbl 0789.76002
[52] A. Moussa et F. Sueur. A 2d spray model with gyroscopic effects. Asymptotic Analysis. 81(1), 53-91, 2013.
[53] H. Neunzert. The Vlasov equation as a limit of Hamiltonian classical mechanical systems of interacting particles. Trans. Fluid Dynamics 18, 663-678, 1977.
[54] J. H. Ortega, L. Rosier et T. Takahashi. Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. M2AN Math. Model. Numer. Anal. 39(1), 79-108, 2005. Numdam |  MR 2136201 |  Zbl 1087.35081
[55] J. H. Ortega, L. Rosier et T. Takahashi. On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(1), 139-165, 2007.  MR 2286562 |  Zbl 1168.35038
[56] G. Planas et F. Sueur. On the “viscous incompressible fluid + rigid body” system with Navier conditions A paraître aux Ann. Inst. H. Poincaré Anal. Non Linéaire.
[57] C. Rosier et L. Rosier. Smooth solutions for the motion of a ball in an incompressible perfect fluid, Journal of Functional Analysis 256(5), 1618-1641, 2009.  MR 2490232 |  Zbl 1173.35105
[58] J. A. San Martin, V. Starovoitov et M. Tucsnak. Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113-147, 2002.  MR 1870954 |  Zbl 1018.76012
[59] P. Serfati. Équation d’Euler et holomorphies à faible régularité spatiale. C. R. Acad. Sci. Paris Sér. I Math. 320(2), 175-180, 1995.  MR 1320351 |  Zbl 0834.34077
[60] P. Serfati. Solutions $C^\infty $ en temps, $n$-$\log $ Lipschitz bornées en espace et équation d’Euler. C. R. Acad. Sci. Paris Sér. I Math., 320(5), 555-558, 1995.  MR 1322336 |  Zbl 0835.76012
[61] P. Serfati. Structures holomorphes à faible régularité spatiale en mécanique des fluides. J. Math. Pures Appl. 74(2), 95-104, 1995.  MR 1325824 |  Zbl 0849.35111
[62] D. Serre. Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4(1), 99-110, 1987.  MR 899206 |  Zbl 0655.76022
[63] A. Shnirelman. On the analyticity of particles trajectories in the ideal incompressible fluid. Global and stochastic analysis 2(1), 2012.
[64] V. N. Starovoitov. Nonuniqueness of a solution to the problem on motion of a rigid body in a viscous incompressible fluid. J. Math. Sci. 130(4), 4893–4898, 2005.  MR 2065504 |  Zbl 1148.35347
[65] F. Sueur. On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data. A paraître aux Ann. Inst. H. Poincaré Anal. Non Linéaire. doi :j.anihpc.2012.09.001.
[66] F. Sueur. Smoothness of the trajectories of ideal fluid particles with Yudovich vorticities in a planar bounded domain. J. of Differential Equations 251(12), 3421-3449, 2011.  MR 2837690 |  Zbl 1248.76011
[67] F. Sueur. A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body. Comm. in Math. Physics 316(3), 783-808, 2012. kato3d3  MR 2993933 |  Zbl pre06117378
[68] T. Takahashi. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8(12), 1499-1532, 2003.  MR 2029294 |  Zbl 1101.35356
[69] C. Villani. Optimal transport, old and new. Fundamental Principles of Mathematical Sciences 338, Springer-Verlag.  MR 2459454 |  Zbl 1156.53003
[70] Y. Wang et A. Zang. Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differential Equations, 252, 4259-4288, 2012.  MR 2879731 |  Zbl 1241.35151
[71] W. Wolibner. Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698-726, 1933.  MR 1545430 |  Zbl 0008.06901
[72] V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032-1066, 1963.  MR 158189 |  Zbl 0129.19402
Copyright Cellule MathDoc 2018 | Crédit | Plan du site