Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
T. Kappeler; B. Schaad; P. Topalov
Results on qualitative features of periodic solutions of KdV
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 3, 7 p., doi: 10.5802/slsedp.3
Article PDF

Bibliography

[1] M. Erdogan, N. Tzirakis, V. Zharnitsky : Near-linear dynamics in KdV with periodic boundary conditions, Nonlinearity 23 (2010), 1675-1694.  MR 2652476 |  Zbl 1195.35259
[2] B. Grébert, T. Kappeler, J. Pöschel: Normal form theory of the NLS equation, preliminary version, arxiv.org/abs/0907.3938v1 2009. To appear in EMS Series of Lectures in Mathematics, EMS Publishing House.
[3] A. Its, V. Matveev : A class of solutions of the Korteweg-de Vries equation(in Russian), Problems in Math. Physics N08, Izdat. Leningrad Univ., Leningrad, 1976 , 79-92.  MR 516298
[4] T. Kappeler: Fibration of the phase-space for the Korteweg-de Vries equation, Ann. Inst. Fourier 41 (1991), 539-575. Cedram |  MR 1136595 |  Zbl 0731.58033
[5] T. Kappeler, M. Makarov: On action-angle variables for the second Poisson bracket, Comm. in Math. Phys., 214, 3 (2000), 651-677.  MR 1800865 |  Zbl 1003.37038
[6] T. Kappeler, M. Makarov: On Birkhoff coordinates for KdV, Ann. H. Poincaré 2 (2001), 807 - 856.  MR 1869523 |  Zbl 1017.76015
[7] T. Kappeler, J. Pöschel: KdV & KAM, Ergebnisse Math. u. Grenzgebiete, Springer, Berlin, 2003.  MR 1997070
[8] T. Kappeler, B. Schaad, P. Topalov: mKdV and its Birkhoff coordinates, Physica D: Nonlinear Phenomena, 237, 10-12 (2008), 1655-1662.  MR 2454610 |  Zbl 1143.76400
[9] T. Kappeler, B. Schaad, P. Topalov: Asymptotic estimates of spectral quantities of Schrödinger operators, arXiv: 1107.4542.
[10] T. Kappeler, B. Schaad, P. Topalov: Qualitative features of periodic solutions of KdV, arXiv: 1110.0455.
[11] T. Kappeler, P. Topalov: Global fold structure of the Miura map on $L^2(\mathbb{T},\mathbb{R})$, Int. Math. Research Notices (2004), 2039-2068.  MR 2062735 |  Zbl 1076.35111
[12] T. Kappeler, P. Topalov: Global wellposedness of KdV in $H^{-1}(\mathbb{T},\mathbb{R})$, Duke Math. J. 135 (2006), 327-360.  MR 2267286 |  Zbl 1106.35081
[13] S. Kuksin: Damped driven KdV and effective equation for long-time behaviour of its solution, preliminary version, 2009.  MR 2738999
[14] S. Kuksin, G. Perelman: Vey theorem in infinite dimensions and its application to KdV, Discrete and Continuous Dynamical Systems Ser. A, 27, no 1, (2010), 1-24.  MR 2600759 |  Zbl 1193.37076
[15] S. Kuksin, A. Piatnitski: Khasminskii - Whitham averaging for randomly perturbated KdV equation, J. Math. Pures Appl. 89 (2008), 400-428.  MR 2401144 |  Zbl 1148.35077
[16] V. Marchenko: Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986.  MR 897106 |  Zbl 0592.34011
[17] H. McKean, E. Vaninsky: Action-angle variables for the cubic Schroedinger equation, Comm. Pure Appl. Math. 50 (1997), 489-562.  MR 1441912 |  Zbl 0990.35047
[18] A. Savchuk, A. Shkalikov: On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes 80, no 6 (2006), 864-884.  MR 2311614 |  Zbl 1129.34055
[19] B. Schaad: Qualitative features of periodic solutions of KdV, PhD thesis, University of Zurich, 2011.
Copyright Cellule MathDoc 2019 | Credit | Site Map