Center for diffusion of mathematic journals

 
 
 
 

Séminaire Laurent Schwartz — EDP et applications

Table of contents for this volume | Previous article | Next article
Mathieu Lewin
Sur l’effondrement dynamique des étoiles quantiques pseudo-relativistes
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exp. No. 13, 20 p., doi: 10.5802/slsedp.10
Article PDF

Résumé - Abstract

Dans cet exposé, je présente plusieurs modèles quantiques non linéaires permettant de décrire certaines étoiles. Je m’intéresse tout particulièrement à l’effondrement gravitationnel des étoiles trop lourdes, un phénomène modélisé par des solutions qui explosent en temps fini. Je montre l’existence de telles solutions et je décris plusieurs de leurs propriétés au temps d’explosion.

Bibliography

[1] V. Bach, E. H. Lieb, and J. P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., 76 (1994), pp. 3–89.  MR 1297873 |  Zbl 0839.60095
[2] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev., 108 (1957), pp. 1175–1204.  MR 95694 |  Zbl 0090.45401
[3] N. N. Bogoliubov, On a New Method in the Theory of Superconductivity, J. Exp. Theor. Phys., 34 (1958), p. 58.  Zbl 0090.45501
[4] A.-P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), pp. 1092–1099.  MR 177312 |  Zbl 0151.16901
[5] É. Cancès, C. Le Bris, and Y. Maday, Méthodes mathématiques en chimie quantique. Une introduction, vol. 53 of Collection Mathématiques et Applications, Springer, 2006.  MR 2426947 |  Zbl 1167.81001
[6] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), pp. 549–561.  MR 677997 |  Zbl 0513.35007
[7] J. M. Chadam, The time-dependent Hartree-Fock equations with Coulomb two-body interaction, Commun. Math. Phys., 46 (1976), pp. 99–104.  MR 411439 |  Zbl 0322.35043
[8] J. M. Chadam and R. T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations, J. Math. Phys., 16 (1975), pp. 1122–1130.  MR 413843 |  Zbl 0299.35084
[9] S. Chandrasekhar, The density of white dwarf stars, Philos. Mag., 11 (1931), pp. 592–596.  Zbl 0001.11103
[10] Idem, The maximum mass of ideal white dwarfs, Astrophys. J., 74 (1931), pp. 81–82.  Zbl 0002.23502
[11] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), pp. 315–331.  MR 380244 |  Zbl 0324.44005
[12] A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 500–545.  MR 2290709 |  Zbl 1113.81032
[13] M. J. Esteban, M. Lewin, and É. Séré, Variational methods in relativistic quantum mechanics, Bull. Amer. Math. Soc. (N.S.), 45 (2008), pp. 535–593.  MR 2434346 |  Zbl pre05348713
[14] R. L. Frank and E. Lenzmann, On ground states for the ${L}^2$-critical boson star equation, ArXiv e-prints, (2010).
[15] J. Fröhlich, B. L. G. Jonsson, and E. Lenzmann, Effective dynamics for boson stars, Nonlinearity, 20 (2007), pp. 1031–1075.  MR 2312382 |  Zbl 1124.35084
[16] J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), pp. 1691–1705.  MR 2349352 |  Zbl 1135.35011
[17] Idem, Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory, Commun. Math. Phys., 274 (2007), pp. 737–750.  MR 2328910 |  Zbl 1130.85004
[18] C. Hainzl, E. Lenzmann, M. Lewin, and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations, Ann. Henri Poincaré, 11 (2010), pp. 1023–1052.  MR 2737490 |  Zbl 1209.85009
[19] C. Hainzl and B. Schlein, Stellar collapse in the time dependent Hartree-Fock approximation, Commun. Math. Phys., 287 (2009), pp. 705–717.  MR 2481756 |  Zbl 1175.85002
[20] I. W. Herbst, Spectral theory of the operator $(p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Commun. Math. Phys., 53 (1977), pp. 285–294.  MR 436854 |  Zbl 0375.35047
[21] T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not., (2005), pp. 2815–2828.  MR 2180464 |  Zbl 1126.35067
[22] T. Kato, Perturbation theory for linear operators, Springer, second ed., 1995.  MR 1335452 |  Zbl 0836.47009
[23] E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), pp. 43–64.  MR 2340532 |  Zbl 1171.35474
[24] E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs, Duke Math. J., 152 (2010), pp. 257–315.  MR 2656090 |  Zbl 1202.49013
[25] E. Lenzmann and M. Lewin, On singularity formation for the ${L}^2$-critical Boson star equation. 2011.  Zbl 1235.35231
[26] E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), pp. 185–194.  MR 452286
[27] E. H. Lieb and W. E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Physics, 155 (1984), pp. 494–512.  MR 753345
[28] E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), pp. 147–174.  MR 904142 |  Zbl 0641.35065
[29] J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2 (50) (1958), pp. 419–432.  MR 151829 |  Zbl 0097.09501
[30] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–149. Numdam |  MR 778970 |  Zbl 0704.49004
[31] Idem, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 223–283. Numdam |  MR 778974 |  Zbl 0704.49004
[32] Idem, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1987), pp. 33–97.  MR 879032 |  Zbl 0618.35111
[33] F. Merle and P. Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., 253 (2005), pp. 675–704.  MR 2116733 |  Zbl 1062.35137
[34] F. Merle and Y. Tsutsumi, $L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), pp. 205–214.  MR 1047566 |  Zbl 0722.35047
[35] A. Michelangeli and B. Schlein, Dynamical Collapse of Boson Stars, ArXiv e-prints, (2010).  MR 2909759
[36] H. Nawa, “Mass concentration” phenomenon for the nonlinear Schrödinger equation with the critical power nonlinearity. II, Kodai Math. J., 13 (1990), pp. 333–348.  MR 1078548 |  Zbl 0761.35102
[37] M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier analysis, self-adjointness, Academic Press, New York, 1975.  MR 493420 |  Zbl 0242.46001
[38] P. Ring and P. Schuck, The nuclear many-body problem, vol. Texts and Monographs in Physics, Springer Verlag, New York, 1980.  MR 611683
[39] E. M. Stein, Harmonic analysis : real-variable methods, orthogonality, and oscillatory integrals, vol. 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy.  MR 1232192 |  Zbl 0821.42001
[40] W. Thirring, Bosonic black holes, Physics Letters B, 127 (1983), pp. 27 – 29.
[41] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), pp. 545–565.  MR 829596 |  Zbl 0596.35022
Copyright Cellule MathDoc 2017 | Credit | Site Map